12 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какие вещества относят к полимерам

Полимеры

В 1833 году Й. Берцелиус ввел в обиход термин «полимерия», которым он назвал один из видов изомерии. Такие вещества (полимеры) должны были обладать одинаковым составом, но разной молекулярной массой, как например этилен и бутилен. К современному пониманию термина «полимер» умозаключение Й. Берцелиуса не соответствует, потому что истинные (синтетические) полимеры в то время еще не были известны. Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол) годам.

Химия полимеров возникла только после создания А. М. Бутлеровым теории химического строения органических соединений и получила дальнейшее развитие благодаря интенсивным поискам способов синтеза каучука (Г. Бушарда, У. Тилден, К Гарриес, И. Л. Кондаков, С. В. Лебедев). С начала 20-х годов 20 века стали развиваться теоретические представления о строении полимеров.

Классификация полимеров

Классификация полимеров основана на трех признаках: их происхождении, химической природе и различиях в главной цепочке.

С точки зрения происхождения все полимеры подразделяют на природные (натуральные), к которым относят нуклеиновые кислоты, белки, целлюлозу, натуральный каучук, янтарь; синтетические (полученные в лаборатории путем синтеза и не имеющие природных аналогов), к которым относят полиуретан, поливинилиденфторид, фенолформальдегидные смоли и др; искусственные (полученные в лаборатории путем синтеза, но на основе природных полимеров) – нитроцеллюлоза и др.

Исходя из химической природы, полимеры делят на полимеры органической (в основе мономер – органическое вещество – все синтетические полимеры), неорганической (в основе Si, Ge, S и др. неорганические элементы – полисиланы, поликремниевые кислоты) и элементоорганической (смесь органических и неорганических полимеров – полислоксаны) природы.

Выделяют гомоцепные и гетероцепные полимеры. В первом случае главная цепь состоит из атомов углерода или кремния (полисиланы, полистирол), во втором – скелет из различных атомов (полиамиды, белки).

Физические свойства полимеров

Для полимеров характерны два агрегатных состояния – кристаллическое и аморфное и особые свойства – эластичность (обратимые деформации при небольшой нагрузке — каучук), малая хрупкость (пластмассы), ориентация при действии направленного механического поля, высокая вязкость, а также растворение полимера происходит посредством его набухания.

Получение полимеров

Реакции полимеризации – цепные реакции, представляющие собой последовательное присоединение молекул ненасыщенных соединений друг к другу с образованием высокомолекулярного продукта – полимера (рис. 1).

Рис. 1. Общая схема получения полимера

Так, например, полиэтилен получают полимеризацией этилена. Молекулярная масса молекулы достигает 1миллиона.

Химические свойства полимеров

В первую очередь для полимеров будут характерны реакции, характерные для функциональной группы, присутствующей в составе полимера. Например, если в состав полимера входит гидроксо-группа, характерная для класса спиртов, следовательно, полимер будет участвовать в реакциях подобно спиртам.

Во-вторых, взаимодействие с низкомолекулярными соединениями, взаимодействие полимеров друг с другом с образованием сетчатых или разветвленных полимеров, реакции между функциональными группами, входящими в состав одного и того же полимера, а также распад полимера на мономеры (деструкция цепи).

Применение полимеров

Производство полимеров нашло широкое применение в различных областях жизни человечества — химической промышленности (производство пластмасс), машино – и авиастроении, на предприятиях нефтепереработки, в медицине и фармакологии, в сельском хозяйстве (производство гербицидов, инсектицидов, пестицидов), строительной промышленности (звуко- и теплоизоляция), производство игрушек, окон, труб, предметов быта.

Примеры решения задач

Задание Напишите уравнения получения полиакрилонитрила и фторопласта.
Решение n (CH2=CH-CN) = -(-CH2-CH(CN)-)-
Задание Полистирол хорошо растворяется в неполярных органических растворителях: бензоле, толуоле, ксилоле, тетрахлориде углерода. Вычислите массовую долю (%) полистирола в растворе, полученном растворением 25 г полистирола в бензоле массой 85г. (22,73%).
Решение Записываем формулу для нахождения массовой доли:

Найдем массу раствора бензола:

mр-ра(C6H6) = m(C6H6)/(/100%)

Найдем массу раствора полистирола в бензоле:

mр-ра(полистирол в бензоле)= 25 + 373,95 = 398,95 (г)

Найдем массовую долю полистирола в бензоле:

(полистирола) = 25/398,95 × 100% = 6,27%

Полимеры

Полимемры (греч. рплэ- –много; мЭспт –часть).

Полимерами называются высокомолекулярные химические соединения, состоящие из многочисленных элементарных звеньев (мономеров), представляющих собой одинаковую группу атомов и связанных между собой химическими связями.

Макромолекулы представляют собой длинные цепи из мономеров, что определяет их большую гибкость. Отдельные атомы в мономерах соединены между собой довольно прочными ковалентными химическими связями. Между макромолекулами полимеров действуют значительно более слабые физические связи. Молекулярная масса их составляет от 5000 до 1000000. При таких больших размерах макромолекул свойства веществ определяются не только химическим составом этих молекул, но и их взаимным расположением и строением.

Полимер — это высокомолекулярное соединение: количество мономерных звеньев в полимере (степень полимеризации) должно быть достаточно велико (в ином случае соединение будет называться олигомером). Во многих случаях количество звеньев может считаться достаточным, чтобы отнести молекулу к полимерам, если при добавлении очередного мономерного звена молекулярные свойства не изменяются. Как правило, полимеры — вещества с молекулярной массой от нескольких тысяч до нескольких миллионов.

Если связь между макромолекулами осуществляется с помощью слабых сил Ван-Дер-Ваальса, они называются термопласты, если с помощью химических связей — реактопласты. К линейным полимерам относится, например, целлюлоза, к разветвлённым, например, амилопектин, есть полимеры со сложными пространственными трёхмерными структурами.

В строении полимера можно выделить мономерное звено — повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, например поливинилхлорид (–СН2–CHCl–)n, каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами или гетерополимерами.

Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений. Названия полимеров образуются из названия мономера с приставкой поли-: полиэтилен, полипропилен, поливинилацетат и т. п.

Особые механические свойства

  • · эластичность — способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки);
  • · малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло);
  • · способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок).

Особенности растворов полимеров:

  • · высокая вязкость раствора при малой концентрации полимера;
  • · растворение полимера происходит через стадию набухания.

Особые химические свойства:

· способность резко изменять свои физико-механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т. п.).

Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают гибкостью.

По химическому составу все полимеры подразделяются на органические, элементоорганические, неорганические.

  • · Органические полимеры.
  • · Элементоорганические полимеры. Они содержат в основной цепи органических радикалов неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами. В природе их нет. Искусственно полученный представитель — кремнийорганические соединения.

Следует отметить, что в технике полимеры часто используются как компоненты композиционных материалов, например, стеклопластиков. Возможны композиционные материалы, все компоненты которых – полимеры (с разным составом и свойствами).

По форме макромолекул полимеры делят на линейные, разветвлённые (частный случай — звездообразные), ленточные, плоские, гребнеобразные, полимерные сетки и так далее.

Полимеры подразделяют по полярности (влияющей на растворимость в различных жидкостях). Полярность звеньев полимера определяется наличием в их составе диполей — молекул с разобщённым распределением положительных и отрицательных зарядов. В неполярных звеньях дипольные моменты связей атомов взаимно компенсируются. Полимеры, звенья которых обладают значительной полярностью, называют гидрофильными или полярными. Полимеры с неполярными звеньями — неполярными, гидрофобными. Полимеры, содержащие как полярные, так и неполярные звенья, называются амфифильными. Гомополимеры, каждое звено которых содержит как полярные, так и неполярные крупные группы, предложено называть амфифильными гомополимерами.

По отношению к нагреву полимеры подразделяют на термопластичные и термореактивные. Термопластичные полимеры (полиэтилен, полипропилен, полистирол) при нагреве размягчаются, даже плавятся, а при охлаждении затвердевают. Этот процесс обратим. Термореактивные полимеры при нагреве подвергаются необратимому химическому разрушению без плавления. Молекулы термореактивных полимеров имеют нелинейную структуру, полученную путём сшивки (например, вулканизация) цепных полимерных молекул. Упругие свойства термореактивных полимеров выше, чем у термопластов, однако, термореактивные полимеры практически не обладают текучестью, вследствие чего имеют более низкое напряжение разрушения.

Полярные термопласты имеют повышенные значения диэлектрической проницаемости и высокие диэлектрические потери, которые существенно зависят от температуры и частоты напряжения. Значения электрической прочности и удельного объемного сопротивления и них ниже, чем у неполярных материалов.

Эти полимеры являются низкочастотными диэлектриками и применяются в электроустановках, работающих при постоянном напряжении или в области низких частот. Для них характерны следующие электрические характеристики: =1011-1014 Ом*м; = 3 – 3.6; tg = 10-2 ; Епр до 40 кВ/мм при толщине до 1 мм; у пленок толщиной 0.02 – 0.1 мм Епр имеет значения до 180 кВ/мм и выше. У слабополярных термопластов удельное сопротивление выше, а диэлектрические потери ниже.

К полярным термопластам относятся поливинилхлорид, полиэтилентерефталат, полиметилметакрилат, полиамидные смолы. Для них характерна дипольно-релаксационная поляризация, поэтому они обладают пониженными электроизоляционными свойствами и применяются на низких частотах:

  • * е = 4…7;
  • * с = 1010…1013 Ом·м;
  • * tgд = 0,01…0,1 (при f = 106 Гц);
  • * Епр = 15…50 МВ/м.

К неполярным полимерам с малыми диэлектрическими потерями относятся полистирол, полиизобутилен, полипропилен, политетрафторэтилен , полиэтилен. Эти полимеры имеют наибольшее техническое значение из материалов, получаемых полимеризацией.

Пластмассы это композиционные материалы на основе полимеров, изделия из которых получают пластическим деформированием или литьем под давлением.

Основные компоненты пластмасс: наполнитель и связующее.

* порошковые: каолин, слюда, кварцевый песок, асбестовая мука,

древесная мука, тальк и др.;

* волокнистые: хлопковое волокно, стекловолокно, углеволокно,

* слоистые: бумага, хлопчатобумажная ткань, стеклоткань, асботкань.

В качестве связующего используются линейные или пространственные полимеры смолы.

Кроме того, в пластмассы добавляют вспомогательные вещества: отвердители, пластификаторы, стабилизаторы, красители др.

Пластмассы с порошковым наполнителем называют пресспорошками, с волокнистым волокнитами, а со слоистым слоистыми пластиками.

Термопластичные пластмассы изготовляют на основе линейных смол (полиамидных, полиуретановых, полиэфирных и др.). Они пластичны, обладают высокой технологичностью. Изделия получают литьем под давлением.

Термореактивные пластмассы производят на основе смол с пространственной сетчатой структурой (эпоксидных, фенолформальдегидных (бакелит С), анилинформальдегидных, кремнийорганических и др.). Термореактивные пластмассы отличаются повышенной твердостью и прочностью. Чаще всего изделия изготовляют путем горячего прессования на гидравлических прессах при давлении 10…12 МПа. Исходное сырье тщательно измельчают и перемешивают. Пресс-форма подогревается, так как процесс полимеризации и отвердения пластмассы обычно требует повышенной температуры (более 60°С).

Свойства пластмасс зависят от свойств связующего и наполнителя.

Связующее должно обеспечить хорошие адгезионную и когезионную прочность, влагостойкость, теплостойкость и высокие электрические свойства. Теплостойкость связующего определяет допустимую рабочую температуру пластмасс:

  • * на эпоксидной смоле до 200°С;
  • * на фенолформальдегидной смоле до 250°С;
  • * на кремнийорганической смоле до 370°С.

Кремнийорганическая смола, обладая высокой теплостойкостью, имеет слабую адгезию к наполнителю, поэтому пластмассы на её основе обладают невысокой прочностью.

Гетинамкс –электроизоляционный слоистый прессованный материал, имющий бумажную основу,пропитанную фенольной и эпоксидной смолой.

В основном используется как основа заготовок печатных плат. Материал обладает низкой механической прочностью, легко обрабатывается и имеет относительно низкую стоимость. Широко используется для дешёвого изготовления плат в низковольтной бытовой аппаратуре, т.к. в разогретом состоянии допускает штамповку, благодаря чему получается плата любой формы вместе со всеми отверстиями.

Из-за низкой огнеупорности в настоящее время гетинакс не используется в ответственных электронных устройствах. Вместо него применяются текстолиты (чаще всего — стеклотекстолит), которые превосходят гетинакс по огнеупорности, прочности, сцеплению с фольгой и ряду других параметров, важных для электроники.

Тормозная колодка представляет из себя металлическую пластинку, являющуюся основой, на которой закреплена фрикционная накладка. Колодка с накладкой повторяют форму поверхности, к которой они прижимаются — диска (плоскость трения прямая) или барабана (плоскость трения дугообразная). Закреплена накладка на основе заклепками или специальным клеем. Кроме того, на некоторых автомобилях предусмотрена установка в колодке датчика её износа.

В состав современной фрикционной накладки входят керамика, специальные смолы, синтетический каучук, органические и минеральные волокна, наполнители и модификаторы. Состав фрикционных материалов довольно сложен, и у каждой фирмы-изготовителя тормозных колодок он свой. Дело в том, что при торможении колодки очень сильно нагреваются, порой до тысячи градусов. При этом они должны уверенно переносить такие экстремальные температуры, не разрушаться и не терять при этом своих фрикционных свойств.

Фторопласт 4 (фторопласт ф-4) – материал, полученный химическим путем. Фторопласт представляет собой высокомолекулярный кристаллизованный полимер. Этот материал обладает почти абсолютной химической стойкостью. Сочетание уникальных физических, химических, электроизоляционных, антифрикционных и многих других свойств, которыми обладает фторопласт 4, делает его уникальным материалом.

Особенности фторопласта 4:

  • · Фторопласт 4 обладает чрезвычайно высокой химической стойкостью (это объясняется высоким экранирующим эффектом электроотрицательных атомов фтора), а также стойкостью ко всем минеральным и органическим кислотам, щелочам, органическим растворителям, окислителям, газам и другим агрессивным средам;
  • · Разрушить полимер в состоянии лишь расплав щелочных металлов, элементарный фтор и трехфтористый хлор при высоких температурах;
  • · Фторопласт 4 обладает способностью не смачиваться водой и не подвергаться воздействию воды при самом длительном испытании;
  • · Этот материал демонстрирует исключительно высокие диэлектрические показатели, обусловленные неполярностью полимера;
  • · Полимер имеет низкое значение тангенса угла диэлектрических потерь и диэлектрической проницаемости;
  • · У фторопласта 4 исключительно высокая стойкость к вольтовой дуге;
  • · Электрическая прочность полимера на образцах толщиной 1 мм – не менее 55 кВ/мм;
  • · Абсолютная стойкость в тропических условиях, фторопласт не повреждается грибками;
  • · Полимер обладает способностью оставаться прочным, стабильным и абсолютно работоспособным в интервале температур от -269 до +260 °С;
  • · Температура плавления фторопласта 4 – около +327 °С, выше которой исчезает кристаллическая структура и он превращается в аморфный прозрачный материал, не переходящий из высокоэластичного в вязкотекучее состояние даже при температуре разложения (+415 °С);
  • · Фторопласт используется как антиадгезионный материал благодаря крайне низкой поверхностной энергии;
  • · Фторопласт устойчив к сорбции веществ и нарастанию на его поверхности различных отложений;
  • · Полимер способен пропускать УФ-лучи и обладает высокой стойкостью к окислению;
  • · Исключительная стойкость ф-4 к гидролизу;
  • · Материал устойчив к старению в обычных условиях, гарантийный срок сохранения показателей качества более 20 лет. Фторопласт 4 обладает высокими антифрикционными свойствами, исключительно низким коэффициентом трения (в определенных условиях и парах коэффициент трения до 0,02).

Для изделий, работающих под нагрузкой (например, подшипниках), создаются наполненные композиции, содержащие графитированный уголь, кокс, стекловолокно, дисульфид молибдена.

Какие вещества относят к полимерам

Классифицируются полимеры по различным признакам: составу, форме макромолекул, полярности, отношению к нагреву и т.д.

1. По составу основной цепи

гомополимеры полимеры, построенные из одинаковых мономеров:

(целлюлоза, состоящая из остатков β-D-глюкозы);

— сополимеры — полимеры, цепочки молекул которых состоят из двух или более различных структурных звеньев:

(нуклеиновая кислота, гиалуроновая кислота, белки);

— блок-сополимеры, состоящие из нескольких полимерных блоков:

Сополимеры получаются в результате реакций сополимеризации.

2. По строению главной цепи

гомоцепные

гетероцепные

Гомоцепные полимеры имеют главную цепь, состоящую из одинаковых атомов. Если она состоит из атомов углерода, то такие полимеры называют карбоцепными (полиэтилен, полистироли др.).

Гетероцепными называют такие полимеры, главная цепь которых состоит из различных атомов. К гетероцепным полимерам относятся простые эфиры, например, полиэтиленгликоль.

3. По регулярности строения цепи

— регулярные (стереорегулярные и стереонерегулярные) (присоединение мономерных звеньев по схеме «голова к хвосту» («головой» называется часть звена без заместителя, а «хвостом», соответственно, часть звена с заместителем);

нерегулярные (беспорядочное чередование мономеров различного химического состава).

Однако в большинстве случаев присоединение звеньев идет по типу «голова к хвосту» и при таком строении полимерная цепь довольно регулярна.

4. По форме макромолекулы

линейные;

разветвленные;

пространственные (сшитые)

Линейные и разветвленные цепи полимеров можно превратить в пространственные структуры «сшиванием» с помощью света, радиации или под действием химических реагентов.

5. По химическому составу

По химическому составу полимеры подразделяются на органические, элементоорганические и неорганические.

Органические полимеры составляют наиболее обширную группу соединений. Органические полимеры в главной цепи кроме атомов углерода, могут содержать также и другие элементы — кислород, азот, серу и т.д. Органическими полимерами являются смолы и каучуки.

Элементоорганические соединения в природе не встречаются. Этот класс материалов полностью создан искусственно.

Элементоорганические полимеры содержат в основной цепи неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами (СН3, С6Н5, СН2). Эти радикалы придают материалу, прочность и эластичность, а неорганические атомы сообщают повышенную теплостойкость. Представителями их являются кремнийорганические соединения.

Неорганические полимеры построены из атомов кремния, алюминия, германия, серы и др. и не содержат органические боковые радикалы. Неорганические полимеры являются основой керамики, стекол, ситаллов, слюдяных, асбестовых, углеграфитовых и других материалов.

6. По отношению к нагреванию

термопластические;

термореактивные

При нагревании термопластических полимеров их свойства постепенно изменяются и при достижении определенной температуры они переходят в вязкотекучее состояние. При охлаждении жидких термопластических полимеров наблюдаются обратные явления. Химическая природа полимера при этом не изменяется, процесс плавления и процесс отвердевания обратим.

К термопластическим полимерам относятся полиэтилен, полистирол, поливинилхлорид.

При нагревании термореактивных полимеров (реактопласты) они приобретают сетчатую структуру. Такие полимеры не восстанавливают свои свойства при нагревании и последующем охлаждении. Примером таких полимеров служат фенолформальдегидные смолы, мочевиноальдегидные, полиэфирные, эпоксидные и карбамидные смолы. Они содержат обычно различные наполнители.

7. По развитию деформации (при комнатных температурах)

пластомеры;

— эластомеры

Полимеры, которые легко деформируются при комнатной температуре, называют эластомерами, трудно деформируемые пластомерами (пластиками).

8. По природе (происхождению)

— природные;

— искусственные;

— синтетические

Полимеры, встречающиеся в природе – органические вещества растительного (хлопок, шелк, натуральный каучук, целлюлоза и др.) и животного (кожа, шерсть и др.) происхождения, а также минеральные вещества (слюда, асбест, естественный графит, природный алмаз, кварц и др.).

Искусственные полимеры получают из природных полимеров путем их химической модификации. Одним из наиболее распространенных природных полимеров, который непрерывно регенерируется в процессе фотосинтеза, является целлюлоза.

Нитроцеллюлоза и ацетатцеллюлоза – продукты химической модификации целлюлозы – искусственные полимеры. Они растворимы в ацетоне, хлороформе и др. растворителях.

Эфиры целлюлозы используют для получения фотопленки и волокон.

Вискозная нить получается растворением природной целлюлозы в сероуглероде со щелочью с последующим ее выделением. Вискозная нить и целлюлоза природная имеют различную кристаллическую структуру, пластмасса целлулоид получается обработкой нитроцеллюлозы камфарой в присутствии спирта.

Синтетические полимеры получают из простых веществ путем химического синтеза. Основным преимуществом синтетических полимеров перед природными являются неограниченные запасы исходного сырья и широкие возможности синтеза полимеров с заранее заданными свойствами. Исходным сырьем для получения синтетических полимеров являются продукты химической переработки нефти, природного газа и каменного угля.

9. По полярности

полярные;

неполярные

Полярные содержат полярные группы -OH, -COOH, -CN, -Cl, -CONH2 — ПВС (поливиниловый спирт), ПВХ (поливинилхлорид).

Неполярные не содержат полярных групп атомов — ПЭ (полиэтилен), ПП (полипропилен) и др.

Полимеры

Полиме́ры (от греч. πολύ — много и μέρος — часть) — неорганические и органические, аморфные и кристаллические вещества, состоящие из «мономерных звеньев», соединённых в длинные макромолекулы химическими или координационными связями. Полимер — это высокомолекулярное соединение: количество мономерных звеньев в полимере (степень полимеризации) должно быть достаточно велико (в ином случае соединение будет называться олигомером). Во многих случаях количество звеньев может считаться достаточным, чтобы отнести молекулу к полимерам, если при добавлении очередного мономерного звена молекулярные свойства не изменяются [1] . Как правило, полимеры — вещества с молекулярной массой от нескольких тысяч до нескольких миллионов [2] .

Если связь между макромолекулами осуществляется с помощью слабых сил Ван-Дер-Ваальса, они называются термопласты, если с помощью химических связей — реактопласты. К линейным полимерам относится, например, целлюлоза, к разветвлённым, например, амилопектин, есть полимеры со сложными пространственными трёхмерными структурами.

В строении полимера можно выделить мономерное звено — повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, например поливинилхлорид (—СН2—CHCl—)n, каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами или гетерополимерами.

Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических преобразований. Названия полимеров образуются из названия мономера с приставкой поли-: полиэтилен, полипропилен, поливинилацетат и т. п.

Содержание

Особенности

Особые механические свойства

  • эластичность — способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки);
  • малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло);
  • способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок).

Особенности растворов полимеров:

  • высокая вязкость раствора при малой концентрации полимера;
  • растворение полимера происходит через стадию набухания.

Особые химические свойства:

  • способность резко изменять свои физико-механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т. п.).

Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают гибкостью.

Классификация

По химическому составу все полимеры подразделяются на органические, элементоорганические, неорганические.

  • Органические полимеры.
  • Элементоорганические полимеры. Они содержат в основной цепи органических радикалов неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами. В природе их нет. Искусственно полученный представитель — кремнийорганические соединения.
  • Неорганические полимеры. Они не содержат в повторяющемся звене связей C-C, но способны содержать органические радикалы, как боковые заместители.

Следует отметить, что в технике полимеры часто используются как компоненты композиционных материалов, например, стеклопластиков. Возможны композиционные материалы, все компоненты которых — полимеры (с разным составом и свойствами).

По форме макромолекул полимеры делят на линейные, разветвлённые (частный случай — звездообразные), ленточные, плоские, гребнеобразные, полимерные сетки и так далее.

Полимеры подразделяют по полярности (влияющей на растворимость в различных жидкостях). Полярность звеньев полимера определяется наличием в их составе диполей — молекул с разобщённым распределением положительных и отрицательных зарядов. В неполярных звеньях дипольные моменты связей атомов взаимно компенсируются. Полимеры, звенья которых обладают значительной полярностью, называют гидрофильными или полярными. Полимеры с неполярными звеньями — неполярными, гидрофобными. Полимеры, содержащие как полярные, так и неполярные звенья, называются амфифильными. Гомополимеры, каждое звено которых содержит как полярные, так и неполярные крупные группы, предложено называть амфифильными гомополимерами.

По отношению к нагреву полимеры подразделяют на термопластичные и термореактивные. Термопластичные полимеры (полиэтилен, полипропилен, полистирол) при нагреве размягчаются, даже плавятся, а при охлаждении затвердевают. Этот процесс обратим. Термореактивные полимеры при нагреве подвергаются необратимому химическому разрушению без плавления. Молекулы термореактивных полимеров имеют нелинейную структуру, полученную путём сшивки (например, вулканизация) цепных полимерных молекул. Упругие свойства термореактивных полимеров выше, чем у термопластов, однако, термореактивные полимеры практически не обладают текучестью, вследствие чего имеют более низкое напряжение разрушения.

Природные органические полимеры образуются в растительных и животных организмах. Важнейшими из них являются полисахариды, белки и нуклеиновые кислоты, из которых в значительной степени состоят тела растений и животных и которые обеспечивают само функционирование жизни на Земле. Считается, что решающим этапом в возникновении жизни на Земле явилось образование из простых органических молекул более сложных — высокомолекулярных (см. Химическая эволюция).

Синтетические полимеры. Искусственные полимерные материалы

Человек давно использует природные полимерные материалы в своей жизни. Это кожа, меха, шерсть, шёлк, хлопок и т. п., используемые для изготовления одежды, различные связующие (цемент, известь, глина), образующие при соответствующей обработке трёхмерные полимерные тела, широко используемые как строительные материалы. Однако промышленное производство цепных полимеров началось в начале XX века, хотя предпосылки для этого появились ранее.

Практически сразу же промышленное производство полимеров развивалось в двух направлениях — путём переработки природных органических полимеров в искусственные полимерные материалы и путём получения синтетических полимеров из органических низкомолекулярных соединений.

В первом случае крупнотоннажное производство базируется на целлюлозе. Первый полимерный материал из физически модифицированной целлюлозы — целлулоид — был получен ещё в середине XIX века. Крупномасштабное производство простых и сложных эфиров целлюлозы было организовано до и после Второй мировой войны и существует до настоящего времени. На их основе производят плёнки, волокна, лакокрасочные материалы и загустители. Необходимо отметить, что развитие кино и фотографии оказалось возможным лишь благодаря появлению прозрачной плёнки из нитроцеллюлозы.

Производство синтетических полимеров началось в 1906 году, когда Лео Бакеланд запатентовал так называемую бакелитовую смолу — продукт конденсации фенола и формальдегида, превращающийся при нагревании в трёхмерный полимер. В течение десятилетий он применялся для изготовления корпусов электротехнических приборов, аккумуляторов, телевизоров, розеток и т. п., а в настоящее время чаще используется как связующее и адгезивное вещество.

Благодаря усилиям Генри Форда, перед Первой мировой войной началось бурное развитие автомобильной промышленности сначала на основе натурального, затем — также и синтетического каучука. Производство последнего было освоено накануне Второй мировой войны в Советском Союзе, Англии, Германии и США. В эти же годы было освоено промышленное производство полистирола и поливинилхлорида, являющихся прекрасными электроизолирующими материалами, а также полиметилметакрилата — без органического стекла под названием «плексиглас» было бы невозможно массовое самолётостроение в годы войны.

После войны возобновилось производство полиамидного волокна и тканей (капрон, нейлон), начатое ещё до войны. В 50-х годах XX века было разработано полиэфирное волокно и освоено производство тканей на его основе под названием лавсан или полиэтилентерефталат. Полипропилен и нитрон — искусственная шерсть из полиакрилонитрила, — замыкают список синтетических волокон, которые использует современный человек для одежды и производственной деятельности. В первом случае эти волокна очень часто сочетаются с натуральными волокнами из целлюлозы или из белка (хлопок, шерсть, шёлк). Эпохальным событием в мире полимеров явилось открытие в середине 50-х годов XX столетия и быстрое промышленное освоение катализаторов Циглера-Натта, что привело к появлению полимерных материалов на основе полиолефинов и, прежде всего, полипропилена и полиэтилена низкого давления (до этого было освоено производство полиэтилена при давлении порядка 1000 атм.), а также стереорегулярных полимеров, способных к кристаллизации. Затем были внедрены в массовое производство полиуретаны — наиболее распространенные герметики, адгезивные и пористые мягкие материалы (поролон), а также полисилоксаны — элементорганические полимеры, обладающие более высокими по сравнению с органическими полимерами термостойкостью и эластичностью.

Список замыкают так называемые уникальные полимеры, синтезированные в 60—70 годы XX века. К ним относятся ароматические полиамиды, полиимиды, полиэфиры, полиэфир-кетоны и др.; непременным атрибутом этих полимеров является наличие у них ароматических циклов и (или) ароматических конденсированных структур. Для них характерно сочетание выдающихся значений прочности и термостойкости.

Огнеупорные полимеры

Многие полимеры, такие как полиуретаны, полиэфирные и эпоксидные смолы, склонны к воспламенению, что зачастую недопустимо при практическом применении. Для предотвращения этого применяются различные добавки или используются галогенированные полимеры. Галогенированные ненасыщенные полимеры синтезируют путём включения в конденсацию хлорированных или бромированных мономеров, например, гексахлорэндометилентетрагидрофталевой кислоты (ГХЭМТФК), дибромнеопентилгликоля или тетрабромфталевой кислоты. Главным недостатком таких полимеров является то, что при горении они способны выделять газы, вызывающие коррозию, что может губительно сказаться на располагающейся рядом электронике.

Действие гидроксида алюминия основано на том, что под высокотемпературным воздействием выделяется вода, препятствующая горению. Для достижения эффекта требуется добавлять большие количества гидроксида алюминия: по массе 4 части к одной части ненасыщенных полиэфирных смол.

Пирофосфат аммония действует по другому принципу: он вызывает обугливание, что вместе со стеклообразным слоем пирофосфатов даёт изоляцию пластика от кислорода, ингибируя распространение огня.

Применение

Благодаря ценным свойствам, полимеры применяются в машиностроении, текстильной промышленности, сельском хозяйстве, медицине, автомобиле- и судостроении, авиастроении и в быту (текстильные и кожевенные изделия, посуда, клей и лаки, украшения и другие предметы). На основании высокомолекулярных соединений изготовляют резины, волокна, пластмассы, пленки и лакокрасочные покрытия. Все ткани живых организмов представляют высокомолекулярные соединения.

Наука о полимерах

Наука о полимерах стала развиваться как самостоятельная область знания к началу Второй мировой войны и сформировалась как единое целое в 50-х годах XX столетия, когда была осознана роль полимеров в развитии технического прогресса и жизнедеятельности биологических объектов. Она тесно связана с физикой, физической, коллоидной и органической химией и может рассматриваться как одна из базовых основ современной молекулярной биологии, объектами изучения которой являются биополимеры.

Читать еще:  Какие размеры болтов бывают
Ссылка на основную публикацию
Adblock
detector